		_
) A /	T
~	'///	

1.	(a)	(i)	Energy put in to get reaction started (Look for idea of getting started);	1	
		(ii)	Curve showing energy levels at start and finish the same; and lowered activation energy;	2	
	(b)	Bene orang	dict's / Fehling's reagent and heat; ge / red / brown / yellow / green;	2	
	(c)	(i)	Acid hydrolyses starch / breaks glycosidic bond;	1	
		(ii)	Not specific / forms by-products / alters pH / corrosive;	1	
	(d)	(i)	Molecules would have less (kinetic) energy; move slower; fewer collisions / fewer E–S complexes form;	max 2	
		(ii)	Change in pH alters charge / shape; distorts active site / tertiary structure of enzyme / denatures enzyme; substrate will no longer fit active site;	3	[12]
2.	(a)	(i)	Less substrate (molecules) present; Due to them being used up in reaction; OR		
			<u>Product</u> inhibits reaction; Allosteric / competitive / non-competitive inhibition;	2	
		(ii)	Double; Increase of 10°C doubles rate of reaction;		
			OR		
			Increase; Increased KE/ increased energy of molecules / increased movement;	2	
	(b)	To sh	now that <u>enzyme</u> was responsible for conversion, (no other factor);	1	[5]
3.	(a)	(i)	Divide amount of product produced by time taken / calculate gradient / slope of graph:		
			(R Numerical answer without supporting calculation)	1	
		(ii)	Higher temperatures means molecules have more (kinetic) energy; (Look for idea of molecules.) Move faster;		
			Greater chance of collision (between enzyme and substrate); More chance of enzyme-substrate complex being formed;	max. 3	

At 65°C enzyme has been denatured / description of denaturing; 1 1 [6] I activation energy

Greater chance of collision More E-S complexes formed; max 3 (ii) Bonds/specified bonds break; **R** peptide bond Tertiary structure disrupted / denatured / active site destroyed; Substrate no longer fits / binds with active site / ES complex not formed: 3 (b) Lysosomes contain enzymes / lysozyme; Break down proteins; When they burst; max 2 [8] 5. (Polypeptide is) coiled / folded; 1 (a) (i) (ii) Way in which whole molecule is folded / globular shape / folding of secondary structure / further folding / Do not accept 3D shape if not further explained. Structure held by ionic / disulphide bonds; reject hydrogen bonds / peptide bonds only. 1 (iii) Causes bonds which hold the tertiary structure / named bond; To break; Shape no longer maintained / protein denatured; 2 max 1 (b) (i) 5; (ii) Substrates / active sites with shapes; Active site / substrate with complementary (shape); Fitting / binding / forming E-S complex; 3 [8]

(b)

(c)

(a)

(i)

4.

To maintain a constant pH;

More (kinetic) energy;

(Molecules) moving faster; **R** references to vibrating

6.	(a)	(Mol Move Few comp (Note	ecules) with little (kinetic) energy; e slowly; collisions (between enzyme and substrate)/fewer enzyme-substrate blexes formed; e: Question refers to slow rate at 5°C and answer must be in this context.)	3	
	(b)	Heat bond Dena Alter (Note	ing would cause bonds (maintaining tertiary structure)/named s to break: aturing enzyme/ altering tertiary structure; ring shape of active site; e: if answers clearly relate to lactose, they are incorrect)	max 2	[5]
7.	(a)	Mau It is a [<i>Reje</i>	ve/ purple/ violet/ lilac; a protein; ect: blue or pink colour]	2	
	(b)	(i)	Fell <u>as</u> it was used up/ broken down/ changed;	1	
		(ii)	Substrate becomes limiting/ falls/ gets less; Fewer collisions/ complexes formed;	2	
		(iii)	1nitial rate slower; Levelling out at same value;	2	
	(c)	Enab As th Cells	eles a comparison to be made; ne rate/concentration changes as reaction progresses; s/ catalase may become damaged/affected by heat;	max 2	[9]
8.	(a)	(i)	Same general structure as all amino acids; = 1 mark Same general structure as all amino acids and answer making specific reference to amino/ NH ₂ group and carboxyl/ COOH group;	2	
		(ii)	Not <u>normally</u> found in proteins/ polypeptides; [Note: Alternative answers must fit with information provided in passage]	1	
	(b)	(i)	Protein will have different tertiary structure; Affecting shape of active site; Therefore unable to bind to substrate/substrate not able to fit/cannot form enzyme-substrate complex;	3	
		(ii)	tRNA does not bind with non protein amino acids/ACA;		

PMT

			tRNA will only bring proline / will not bring ACA ribosome/mRNA; Enzyme molecules will only contain proline /will not contain ACA;	max 2	
	(c)	Comj Whic	petitive because toxin/ swainsonine has sugar-shaped molecules; ch will fit into active site of enzyme / mannosidase;	2	
	(d) OR	Some There Toxin There can e	e species can make particular toxins harmless; efore can feed on particular plants; ns distributed in different quantities in different parts of plants; efore different species can feed on different parts of plant/ eat different part of plant at different time;	max 2	[12]
9.	(a)	(i) (ii)	Curve rising and levelling out; Substrate becomes limiting/falls/gets less; Fewer collisions/complexes formed;	1 2	
	(b)	To ke	eep pH the same / optimum pH / so change in pH does not affect reaction	on; 1	
	(c)	(i)	For temperature up to $40 - 50^{\circ}$ C has no effect; Over temperature (of $40 - 50^{\circ}$ C) reduces rate of reaction; <i>Note. Award one mark for general statement about the longer the</i> <i>incubation time, the slower the rate of reaction.</i>	2	
		(ii)	Bonds (holding tertiary structure) broken; More enzyme denatured / tertiary structure destroyed; Active sites lose shape/no longer fit; Fewer enzyme-substrate complexes formed; Note. Award marks if clearly in the context of more denaturation. Allow credit here for converse relating to exposure for 5 minutes.	max 3	

	(d)	 Statement about two types, competitive and non-competitive; Note. Award points 2 –5 only in context of competitive and non-competitive inhibition <u>Competitive</u> Similarity of shape of inhibitor and substrate; Inhibitor can enter/bind with active site (of enzyme); 		
		<u>Non-competitive</u> 4 Affect/bind to enzyme other than at active site; 5 Distorts shape of active site;		
		<u>Inhibitors</u> 6 Prevent entry of/binding of substrate to active site; 7 Therefore fewer/no enzyme-substrate complexes formed;	max 6	[15]
10.	(a)	diagram showing molecule A fitting in inhibition site; distortion of active si	te; 2	
	(b)	molecules moving less/slower; reduces chance of collision (between enzyme and substrate)/of enzyme-substrate complexes being formed; (<i>reject converse</i>)	e 2	
	(c)	these bonds hold/maintain tertiary/globular structure (of enzyme); enzyme denatured/tertiary structures destroyed; (shape of) active site distorted/changes; substrate no longer fits/enzyme-substrate complex not formed;	3 max	[7]
11.	(a)	Shape drawn that resembles the active site; drawn in the active site / clearly going to the active site;	2	
	(b)	Substrate concentration not limiting / enzyme concentration limiting; all active sites of enzyme full / enzyme at maximum turnover rate;	2	
	(c)	(More substrate than inhibitor so) more likely to form enzyme-substrate complex; more likely for substrate to enter the active site:	1	
	(d)	Correctly named bonds broken / water removed; tertiary / globular shape of enzyme changed; shape of <u>active site</u> affected;	3	[8]

12. (a) amino acid; 1 violet/purple/mauve/lilac; 1 (b) Amino acid/substrate shape/structure changed; (c) Active site of enzyme; No longer fits/ no longer complementary / enzyme: substrate complex not formed; 3 [5] 1 13. maltose. (a) (i) Activation energy reduced; (ii) starch attached to active site / formation of enzyme-substrate complex; less energy required to bring (substrate) molecules together / to break bonds; reaction occurs in small(er) steps; change in shape of enzyme molecule (induced fit) brings molecules together / allows bonds to break / causes overlapping of electron orbits of substrates. max 3 (b) Enzyme (molecules) denatured at 60°C / high temperature, or description of denaturing (e.g. vibration disrupts enzymes); change (in shape) of active site; change in tertiary/'3D'structure / hydrogen bonds broken; substrates no longer fit; loss of activity of enzyme in water bath due to slow denaturing. max 4 [8] 14. (a) Cyanide binds to enzyme molecule away from active site; shape of active site changed. OR: cyanide attaches permanently to active site; active site blocked. 2 (b) (i) Protein (receptors) / antigen / glycoprotein / glycocalyx. 1 (ii) Enzyme + antibody attaches (to membrane); of cancer cells only; Enzyme breaks down (injected) linamarin; Cyanide released disrupts respiration/metabolism of cancer cells. max 3 [6]

1

PMT

(b)	Subs Com (<u>Bind</u> Low Conf Brea Prod	trate enters active site; plimentary shapes / Lock and Key; <u>ding</u>) to form <u>enzyme-substrate complex;</u> ering of activation energy; Formational / shape change; king <u>of bonds</u> in substrate; ucts no longer fit active site and so are released;	4	
(c)	Mole Caus Mole Preve comp	ecule A binds at site away from active site / allosteric site; see enzyme / active site to change shape; ecule B can enter / competes for active site; ents substrate from entering / no enzyme-substrate plex formed / active site blocked;	4	
(d)	(i)	Optimum pH is 7 / neutral / between 6 and 8 / between 7 and 8;	1	
	(ii)	Max rate = $\frac{\text{Dis tan ce}}{\text{Time}} / \frac{11}{4} / \frac{11}{4 \times 60}$; [Correct answer = 2 marks (<i>IGNORE units</i>)	2	
		e.g. 2.75 mm / hour, 0.046 mm/min, 4.6×10^{-6} mm/min 1 mm/ 21.8 mins, 23.76mm ² /hour]		[12]
(a)	(i)	Carbon, hydrogen, oxygen, nitrogen / CHON;	1	

	(ii)	Proteins made up of many monomers / amino acids; Tryglyceride made of glycerol and fatty acids / few smaller molecules /not joined in chain;	2
	(iii)	Different sorts of amino acids; Only one sort of glucose;	2
(b)	They Can Bind	y are proteins; be used again / not "used up"; to other molecules;	max 2
(c)	(i)	Protein has primary structure / amino acid sequence; Therefore bonds always form in same position;	2

16.

		(ii)	 Active site (of enzyme) has particular shape; (Into which) substrate molecule fits / binds; Appropriate reference linking induced fit and shape; (Competitive inhibitor) has similar shape to substrate; Also fits active sites; Prevents substrate access; (Non-competitive inhibitor) fits at site other than active site; Distorting shape of active site / enzyme; Prevents substrate access; (award once only) Two types identified as competitive and non-competitive; 	max 6	[15]
17.	(a)	(i)	The receptor / glucagon will have a particular shape / tertiary struct The other will fit / bind because of its shape;	ture; 2	
		(ii)	Cells in other parts of the body do not have these receptors / Liver cells have these receptors;	1	
	(b)	Side	chains / R-groups are different;	1	
	(c)	Terti Will Stare	ary structure changes / enzyme denatured / bonds broken; affect active site (of enzyme); ch cannot bind / fit / form enzyme-substrate complex;	3	
	(d)	Keej So p	os pH constant; roteins / enzymes in mitochondria not denatured / affected;	2	
	(e)	1 So 2 So 3 Inv 4 Inv 5 Pro 6 Ca 7 Pro 8 Pro cha	me proteins pass right through membrane; me proteins associated with one layer; volved in facilitated diffusion; volved in active transport; oteins act as carriers; rrier changes shape / position; oteins form channels / pores; otein allows passage of water soluble molecules / arged particles / correct named example;	6 max	[15]
18.	(a)	(i)	Biuret / alkali + copper sulphate; Lilac/purple/mauve/violet; Do not give credit for blue or pink. Ignore references to heating.	2	
	(b)	R gr	oup of phenylalanine copied accurately;	1	

	(c)	(i)	Bond shown linking carbon and nitrogen; OH and H removed, =O and –H remaining;	2	
		(ii)	Peptide bond;	1	
	(d)	Addi	tion of hydroxyl/OH group; Candidate must distinguish clearly between hydroxylation and hydrolysis	1	[7]
19.	(a)	Seve	ral/more than one polypeptide chain in molecule; Evidence must only relate to 4° structure	1	
	(b)	Cher R-gr to ea	nical bonds formed between sulphur-containing groups/ oups/form disulphide bonds; Stronger bonds; Bind chain(s) ch other;	max 2	
	(c)	Diffe	erent <u>number</u> of amino acids; Different sequence of amino s; Bonds in different places; Gives different shape;	max 2	
	(d)	Oute mito have	r layer of skin cells are dead; Do not respire/Do not contain chondria; Do not produce ATP/release energy; Cells do not required proteins/carriers;	max 3	
	(e)	1 TE 2 Th 3 All 4 Ele 5 Va 6 Ca 7 Lo 8 Ma	M uses (beam of) electrons; ese have short wavelength; low high resolution/greater resolution/Allow more detail to be seen/greater useful magnification; extrons scattered (by molecules in air); cuum established; nnot examine living cells; ts of preparation/procedures used <u>in preparing specimens</u> / fixing/staining/sectioning; ay alter appearance/result in artefacts;	max 6	
		0 101			[14]

20. (a) Biuret reagent / Add NaOH and CuSO4; (ignore heated)Positive result = violet/mauve/lilac/purple coloration; (NOT blue)2

- (b) (i) Nitrogen / N; $(NOT N_2)$
 - (ii) Condensation;
 - (iii) Must have box correct (allow HN / NH, but must have C=O correct)

$$\begin{array}{c|c} H & H & O \\ H_2N - C & C & H \\ H & O & C - C \\ H & O & CH_2 \\ SH \end{array}$$

21. (a) Add (Benedict's) reagent (to urine sample) and heat / heat the mixture; red/ brown/ orange/ green/ yellow; 2
(b) Gives quantitative result/level of glucose/concentration of glucose; specific (to glucose) / Benedicts not specific; more sensitive / accurate / precise; max. 2

22. Quality of written communication should be considered in crediting points in the marking scheme. In order to gain credit, answers must be expressed logically in clear, scientific terms.

(a)	(i)	Made up of two sugar units / monosaccharides;	R Two glucose units	1
	(ii)	Correct bond circled;		1
	(iii)	C_{12} ; $H_{22}O_{11}$;		2
(b)	A.T. Mole (Only	involves carriers / proteins; ecules will have a different shape; y those absorbed) will fit;		2
(c)	Lacto So w By o	ose produces a lower / more negative water potential; ater moves into the intestine / less water absorbed; smosis / diffusion / down concentration gradient;		
	Note	concentration gradient must be defined.		3

1 1

1

[5]

Prokaryotic cells do not have a nucleus / have genetic material Not associated with proteins / do not have chromosomes / chromatin / do not divide by mitosis; No membrane-bound organelles; Such as mitochondria / lysosomes / endoplasmic reticulum / Prokaryotic cells may have mesosomes;

Prokaryotic cells smaller; 8

Golgi / chloroplasts;

in cytoplasm;

DNA in loop / ring;

Smaller ribosomes;

(d)

23.

1

2

3

4

5

6

7

- 9 May be enclosed by capsule; max 6 [15] 1 glucose; (a) (reject alpha glucose)
- 1 (b) hydrolysis; (accept catabolic)
- (c) (long) straight/unbranched chains; (idea of more than 1) chains lie side by side / form (micro)fibrils; idea of <u>H</u> bonds holding chains together; 3 [5]